

ENAA 2013

Mass and Age determination for lowmass Young Stellar Objects

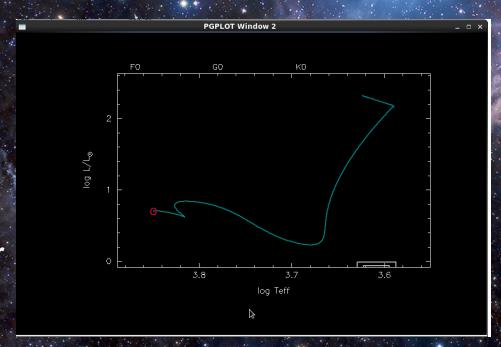
Ana Rei

Advisor: Jorge Gameiro

Overview

- Low-mass Young Stellar Objects;
 - MESA;
 - Sample;
 - MESA Determinations;
 - Ongoing work;
 - Conclusions.

Low-mass Young Stellar Objects


Low-mass (0.3 to 2 M_o) pre-main sequence (PMS) stars are also known as T Tauri Stars;

Typical ages between 0.1 and 100 Myrs;

- T Tauri Stars can be divided into two groups:
 - Classical T Tauri Stars (CTTS): circumstellar disk/active mass accretion and mass loss processes/interaction star-disk;
 - Weak-line T Tauri Stars (WTTS): presence of a cold passive disk.

MESA

- Modules for Experiments in Stellar
 Astrophysics (MESA) → stellar
 evolutionary code: star;
- Adaptation of "example_astero" for PMS studies;

Objective: Test MESA as a source to obtain mass and age for PMS stars (by model comparison), giving as observational constraints effective temperature (Teff), luminosity (L), surface gravity (log g) and/or metalicity.

MESA

- The code creates a PMS model and evolves it, searching for the best-fit model (varying mass).
- At the point in the H-R diagram defined by <u>Teff and L</u>, MESA calculates mass, age, radius, log g and other parameters;
- With this work we pretend to test
 MESA for the determination of mass
 and age for PMS stars.

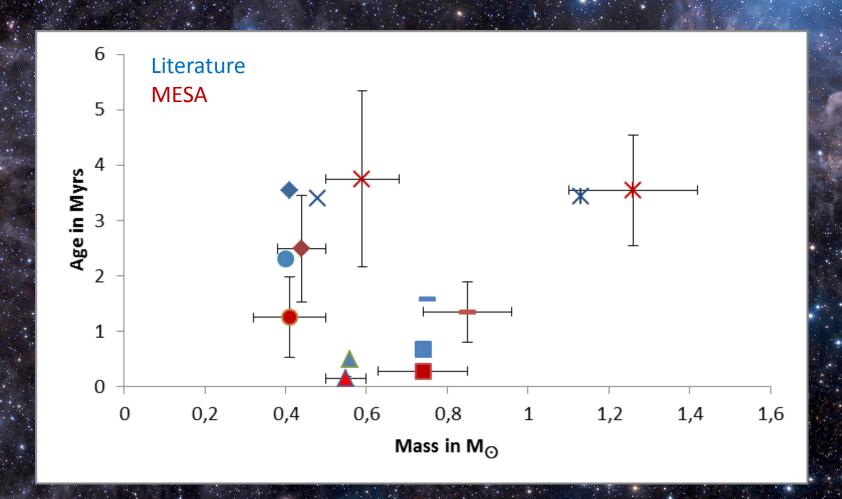
term	l0_freq	l0_corr
	chi2term Teff Teff_obs ff_sigma	0.000002 6030.084914 6030.000000 65.000000
	chi2term logL logL_obs gL_sigma	0.000030 0.812636 0.812910 0.050000
Ę	R/Rsun	2.338461 0.812636
·	.ogL/Lsun Teff	6030 084914
	logg	3.879739
	FeH	0.000000
	delta nu	48.173667
	nu_max	839.269131
corr	a_div_r ection_r	-1.000000 -1.000000
ini ini i i i	itial h1 tial he3 tial he4 nitial Y nitial Z tial FeH	0.755267 0.000024 0.237632 0.237656 0.007077 -0.388659
m	ass/Msun alpha f ov	1.512552 1.587500 0.015000
		7.9837023728817767D+06
chi^2 combined chi^2 seismo chi^2 spectro		0.000016 2225.354848 0.000016
mode	el number	669

Sample

A sample of <u>WTTS</u> from the Taurus
 Molecular Cloud (TMC);

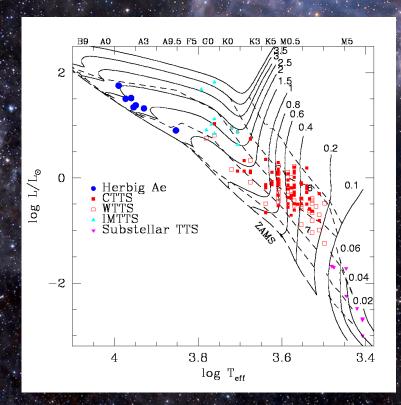
TMC must be forming stars at the same rate for 1-3 Myrs;

Literature data was taken from Güdel et al. 2007;


Mass and age where calculated by model comparison with Seiss et al. 2000
 PMS evolutionary tracks.

MESA determinations – Results (example)

	Literature		MESA	
Star	Mass (M_{\odot})	Age (Myrs)	Mass (${ m M}_{\odot}$)	Age (Myrs)
HBC 359	0.41	3.54	0.44±0.06	2.49±0.96
Anon 1	0.56	0.5	0.55±0.05	0.15±0.04
LK Ca 5	0.4	2.31	0.41±0.09	1.25±0.73
Hubble 4	0.74	0.68	0.74±0.11	0.28±0.11
V827 Tau	0.75	1.59	0.85±0.11	1.35±0.54
JH 108	0.48	3.4	0.59±0.09	3.75±1.58
HBC 427	1.13	3.43	1.26±0.16	3.55±1.00


Total sample consists of 21 WTTS from the TMC.

MESA determinations – Results

Ongoing Work

- We intend to extend this work to CTTS, using Teff and log g as observational constraints and introducing mass accretion and loss processes;
- Extend our work to different metallicities;
- Use MESA to obtain mass and age for TTS from the Gaia-Eso Survey.

Conclusions

 Ages determined by MESA are, in general, lower than the literature ones and closer to the expected ages for the stars in the TMC;

- Differences might be caused by the fact that:
 - MESA values are being calculated using different initial parameters and conditions than those from literature;
 - Incorrect determinations of Teff and L can lead to inaccurate determinations of mass and age.

MESA can be used to determine mass and age for PMS stars;