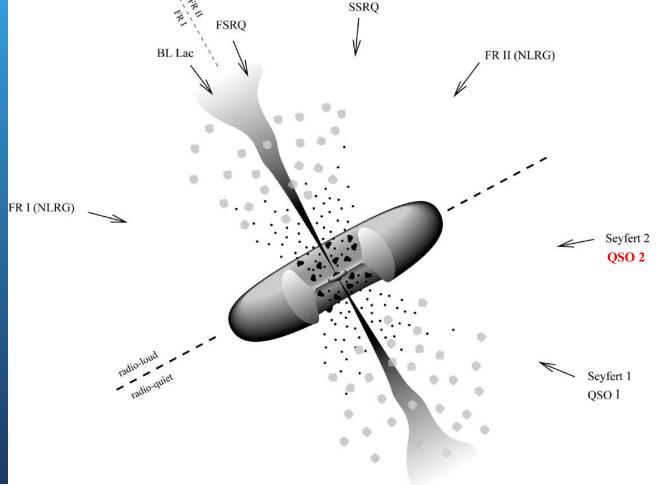
Optical and CO observations of type 2 quasars at intermediate redshift

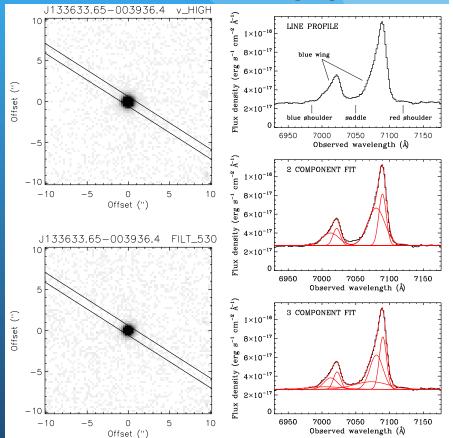

Andrew Humphrey CAUP

The Collaboration

- Montserrat Villar Martín (CAB, INTA/CSIC)
- Mónica Rodríguez & Miguel Pérez Torres (IAA-CSIC)
- Guillaume Drouart (ESO)
- Bjorn Emonts (CSIRO, Australia)
- Andrew Humphrey (Univ. of Porto, Portugal)
- Alejo Martínez Sansigre (Univ. Portsmouth, UK)
- Luis Colina & Santiago Arribas (CAB, INTA/CSIC)
- Santiago García Burillo (OAN)

Type 2 quasars (radio quiet)

- Eluded for decades
- Selecton from SDSS
 - z=0.3-0.83
 - S/N>7.5 in 7th br. pixel
 - narrow permitted lines (2000 km/s)
 - high ionization lines (ratios)
 - [OIII]/Hβ, [NII]/Hα
 - ~300 now known (Zakamska et al. 2003)


The usefulness of type 2 quasars

Strengths

- Obscuration of the active nucleus
- More common than type 2 radio-loud quasars (radio galaxies)
- Lack of radio jets simplifies interpretations
- Open questions we are particularly interested in
 - quasar induced outflows
 - what triggers the nuclear activity
 - the existence and origins of extended emission line regions

Optical imaging and spectroscopy: a work in progress

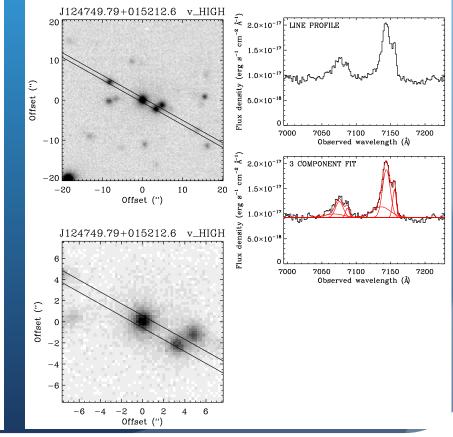
- VLT FORS2 BB and NB/IB images and long-slit spectra 2
 - 9 radio quiet type 2 quasars at z=0.3-0.6
 - selected for their asymmetrical [OIII] 5007 velocity profiles
 - usually enhanced blue wing
- Aim to investigate ionized ouflows and AGN triggering
- Preliminary results...

Correlations between morphology and [OIII] kinematics?

Cometary, multi-knot (3) Highly blueshifted component. Outflows or double nuclei?

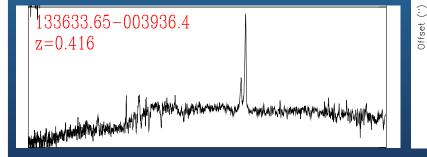
Ð

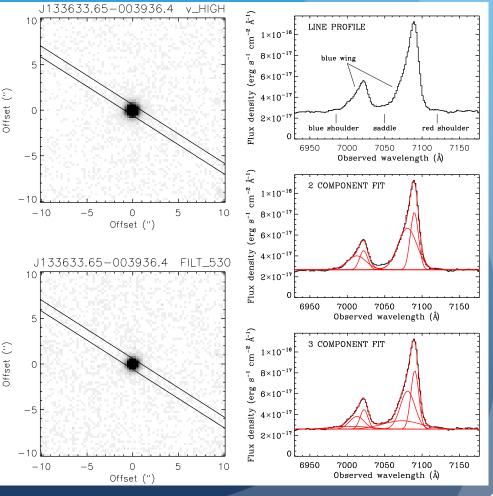
Offset


Offset (")

Offset (")

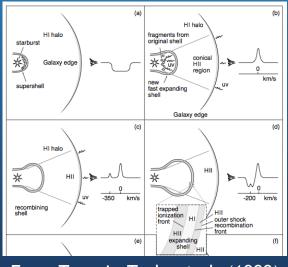
J090307.83+021152.2 v_HIG 20 PA1 LINE PROFILE 3×10⁻¹⁷ ຍີ່ 2×10⁻¹⁷ 1×10⁻¹ blueshifted component red shoulder 6500 6550 6600 6650 6700 6750 Observed wavelength (Å) COMPONENT FIT 3×10⁻ сIJ -20 -10 0 10 20 -¹2 Offset (") be 2×10^{−17} J090307.83+021152.2 v_HIGH 1×10⁻¹ Flux 6500 6550 6600 6650 6700 6750 Observed wavelength (Å) 2 Å-**3 COMPONENT FIT** cm^{-2} 3×10⁻¹⁷ ī, ື່ອ 2×10⁻¹⁷ density 1×10⁻¹³ nux 6500 6550 6600 6650 6700 6750 -2 0 2


Observed wavelength (Å)


Merging, less disturbed, faint tail (4) Redshifted component (3/4) Inflow of gas (and outflows)?

Not all show evidence for mergers

- Unremarkable elliptical morphology
 - isolated
 - no tails / knots
- strong excess in blue wing → outflow
- post-starburst optical spectrum? (starlight)



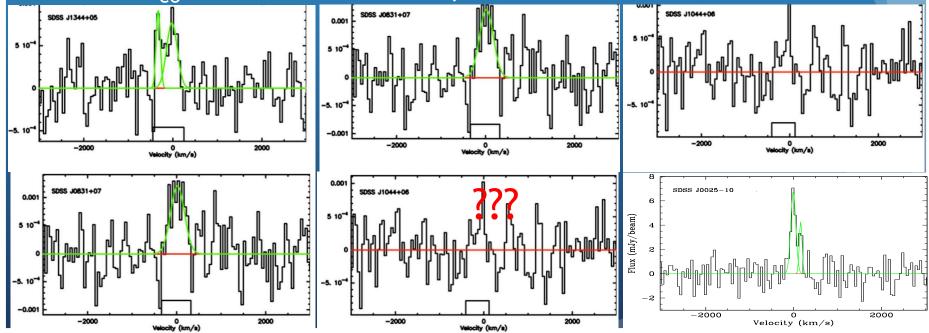
No blueshifted absorption lines

• Low covering factor? (<0.1)

- small area or porous?
- Matter bounded (high-ionization) clouds?
 - Extreme [OIII] / H β ratios in blue wings of some targets

From Tenorio-Tagle et al. (1999)

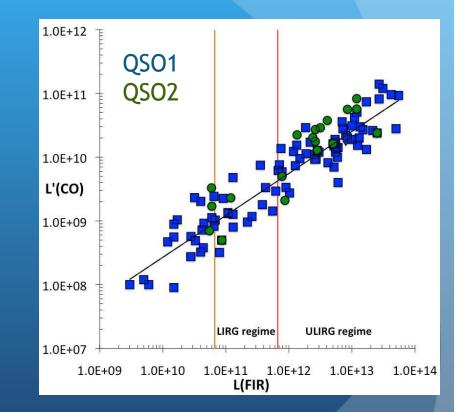
Villar-Martin et al. 2013 astro-ph 1306.1507


CO Observations of type 2 quasars

• CO (1-0) spectroscopy of 10 type 2 quasars at z=0.2-0.3

• IRAM 30 m (8) and ATCA (2)

• 5 detections (+1 tentative detection) gives 50% det. rate


L'_{co} ~ several 10⁹ K km s⁻¹ pc²

Villar-Martin et al. 2013 astro-ph 1306.1507

CO Observations of type 2 quasars

- Adopting coversion a=0.8 M_{sol} (K km s⁻¹ pc²)⁻¹
 - Molecular gas mass ranges from < 4 x 10⁸ to 5 x 10⁹ M_{sun}
- No significant difference to type 1 quasars at the same L_{IR}
- CO is usually narrower than [OIII] 5007 (up to factor of 2)
 - different spatial locations of molecular and ionized gas
 - gravitational motion (CO) vs. outflows ([OIII])

