Evolved stars The metallicity - giant planet connection

Annelies Mortier

Nuno C. Santos, S. Sousa, V. Adibekyan, E. Delgado Mena, M. Tsantaki, G. Israelian, M. Mayor

> XXIII ENAA 18 July 2013

Lisboa, Portugal

Outline

Introduction

2 Metallicity connection for dwarf stars

Giant stars and metallicities

- Sample
- Deriving stellar parameters
- Possible bias
- Metallicity enhancement?

4 SWEETCat

5 Conclusions

- Around 900 planets discovered
- Several detection methods:

Direct imaging, **Photometry (transits), Radial Velocity**, Astrometry, Microlensing, Pulsar timing

- Around 900 planets discovered
- Several detection methods:

Direct imaging, **Photometry (transits), Radial Velocity**, Astrometry, Microlensing, Pulsar timing

 $\bullet\,$ Most hosts are dwarf stars, but $\sim 20\%$ (sub)giants

- Around 900 planets discovered
- Several detection methods:

Direct imaging, **Photometry (transits), Radial Velocity**, Astrometry, Microlensing, Pulsar timing

- $\bullet\,$ Most hosts are dwarf stars, but $\sim 20\%$ (sub)giants
- Theory of planet formation and evolution still under debate (Pollack et al. 1996, Mayer et al. 2002, Mordasini et al. 2009)
 Core accretion
 Gravitational instability

Introduction

H. Levin 2005

Quinn et al. 2002

- Around 900 planets discovered
- Several detection methods:

Direct imaging, **Photometry (transits), Radial Velocity**, Astrometry, Microlensing, Pulsar timing

- Most hosts are dwarf stars, but $\sim 20\%$ (sub)giants
- Theory of planet formation and evolution still under debate (Pollack et al. 1996, Mayer et al. 2002, Mordasini et al. 2009)
 Core accretion Gravitational instability
- Stellar mass, metallicity, disk composition, ... influence planet formation processes

Giant planet frequency - dwarf stars

(Udry & Santos 2007)

(Johnson et al. 2010)

Increasing function of metallicity

Annelies Mortier (CAUP)

⁽Mortier et al. 2013)

No statistical difference between flat or exponential tail

Annelies Mortier (CAUP)

Evolved planet hosts in literature

HM07: same metallicity enhancement as for dwarfs

Evolved planet hosts in literature

Mal13: no for giants, yes for subgiants

71 evolved planet hosts; $\log q < 4.0$; high resolution spectra

Annelies Mortier (CAUP)

• High resolution spectroscopy

- Equivalent widths of Fel and Fell lines with ARES
- Imposing excitation and ionization equilibrium assuming LTE, using the MOOG code

• Stellar evolutionary models from the **Padova** group through their webinterface $\Rightarrow M_{\odot}$

Two different line list sets

- Hekker & Melendez 2007
- Sousa et al. 2008 + Tsantaki et al. 2013

 $\Rightarrow T_{eff}$, [Fe/H]

 $\log g, \xi_t$

(Tsantaki et al. 2013)

TS13 better for cool stars than SO08

Comparing different linelists

(Mortier et al. 2013b)

Results agree well \rightarrow SO08 + TS13 adopted

Annelies Mortier (CAUP)

Comparing with literature

(Mortier et al. 2013b)

Good agreement with different literature works

Annelies Mortier (CAUP)

Dwarfs versus giants

(Mortier et al. 2013b)

Dwarf planet hosts more metal-rich than giant stars with planets

Annelies Mortier (CAUP)

Bias in search samples

(Mortier et al. 2013b)

Planet search samples of (sub)giant stars have a metallicity bias due to B-V colour cut

(Mortier et al. 2013b)

We find no metallicity enhancement for giant stars with planets

Annelies Mortier (CAUP)

SWEETCat

Parameters from this sample added to homogeneous planet host catalogue

SWEET-Cat: a catalog of stellar parameters for stars with planets

ownload Data

Name	HD number	RA	Dec	Vmag	o(Vmag)	π	σ(π)	Source of π	Teff	o(Teff)	logg	σ(logg)	LC logg	σ(LC logg)	Vt	o(Vt)	[Fe/H]	o([Fe/H])	Mass	σ(I
11 Com	107383	12 20 43.02	+17 47 34.33	4.74	0.02	11.25	0.22	Simbad	4830	79	2.61	0.13			1.70	0.10	-0.34	0.06	2.00	0.2
11 UMi	136726	15 17 05.88	+71 49 26.04	5.02		8.19	0.19	Simbad	4340	70	1.60	0.15			1.60	0.80	0.04	0.04	1.80	0.2
14 And	221345	23 31 17.41	+39 14 10.30	5.22		12.63	0.27	Simbad	4773	100	2.53	0.10			1.64	0.30	-0.26	0.11	1.45	
<u>14 Her</u>	145675	16 10 24.31	+43 49 03.52	6.67		56.91	0.34	Simbad	5311	87	4.42	0.18			0.92	0.10	0.43	0.08	0.95	0.0
16 Cyg B	186427	19 41 51.97	+50 31 03.08	6.20		47.14	0.27	Simbad	5772	25	4.40	0.07			1.07	0.04	0.08	0.04	1.00	0.0
18 Del	199665	20 58 25.93	+10 50 21.42	5.52		13.28	0.31	Simbad	5076	38	3.08	0.10			1.32	0.04	0.00	0.03	2.33	0.0
24 Sex	90043	10 23 28.37	-00 54 08.09	6.44	0.01	12.91	0.38	Simbad	5069	62	3.40	0.13			1.27	0.07	-0.01	0.05	1.81	0.0
<u>30 Ari B</u>	16232	02 36 57.74	+24 38 53.02	7.09		24.52	\$.68	Simbad	6377	170	4.49	0.05			~		0.14	0.18	1.16	0.0
4 Uma	73108	08 40 12.81	+64 19 40.57	4.60		12.74	0.26	Simbad	4564	100	2.28	0.10			1.69	0.30	-0.16	0.13	1.48	
42 Dra	170693	18 25 59.13	+65 33 48.52	4.83		10.36	0.20	Simbad	4513	100	2.24	0.10			1.59	0.30	-0.39	0.12	1.74	
<u>47 Uma</u>	95128	10 59 27.97	+40 25 48.92	5.04	0.05	71.11	0.25	Simbad	5954	25	4.44	0.10			1.30	0.04	0.06	0.03	1.04	0.0
51 Peg	217014	22 57 27.98	+20 46 07.79	5.46	0.05	64.07	0.38	Simbad	5804	36	4.42	0.07			1.20	0.05	0.20	0.05	1.04	0.0
55 Cnc	75732	08 52 35.81	+28 19 50.95	5.95	0.05	81.03	0.75	Simbad	5279	62	4.37	0.18			0.98	0.07	0.33	0.07	0.93	0.0
6 Lyn	45410	06 30 47.10	+58 09 45.48	5.88		17.92	0.47	Simbad	4978	18	3.16	0.05			1.10	0.07	-0.13	0.02	1.70	0.3
																	(San	tos et	al. 2	013

Already analysed 70% of all FGKM planet hosts and 96% of all RV detected dwarf hosts

Annelies Mortier (CAUP)

- Analyse giant stars with linelists of Sousa et al. 2008 (T $_{eff}>5200\,{\rm K})$ and Tsantaki et al. 2013 (T $_{eff}<5200\,{\rm K})$
- Comparing dwarf stars with giant stars suffers from sample biases in metallicity
- We find no metallicity enhancement for giant stars with planets, as we do for dwarfs
- Sample is added to the homogeneous catalogue SWEET-Cat

- Analyse giant stars with linelists of Sousa et al. 2008 (T $_{eff}>5200\,{\rm K})$ and Tsantaki et al. 2013 (T $_{eff}<5200\,{\rm K})$
- Comparing dwarf stars with giant stars suffers from sample biases in metallicity
- We find no metallicity enhancement for giant stars with planets, as we do for dwarfs
- Sample is added to the homogeneous catalogue SWEET-Cat

Stay tuned!