Fundamental Cosmology in the E-ELT Era

Carlos Martins* and the CAUP Dark Side Team

(with key contributions from Ana Catarina Leite, Ana Mafalda Monteiro, Mariana Julião, Miguel Ferreira, Pauline Vielzeuf and Pedro Pedrosa)

*FCT Research Professor

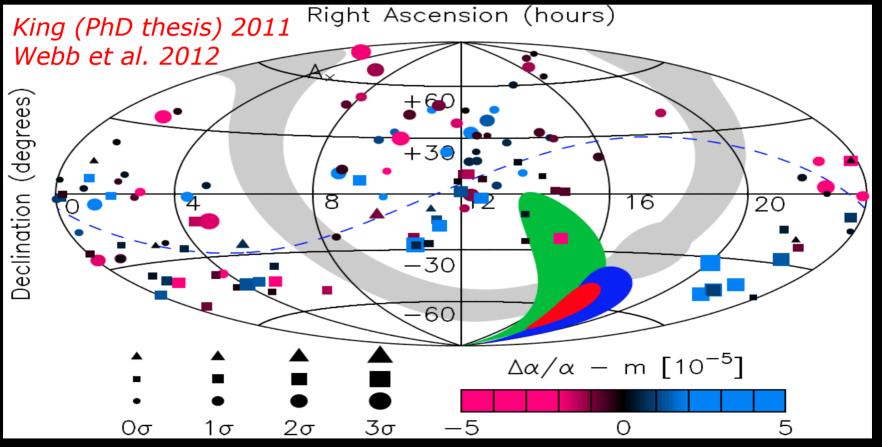
Based On...

- Amendola, Leite, Martins, Nunes, Pedrosa & Seganti, PRD 86 (2012) 063515
- Avgoustidis, Luzzi, Martins & Monteiro, JCAP 1202 (2012) 013
- Avgoustidis, Martins, Monteiro, Vielzeuf & Luzzi, arXiv:1305.7031
- Ferreira, Julião, Martins & Monteiro, Phys. Rev. D86 (2012) 125025
- Ferreira, Julião, Martins & Monteiro, Phys. Lett. B724 (2013) 1
- Martinelli, Pandolfi, Martins & Vielzeuf, Phys. Rev. D86 (2012) 123001
- Molaro, Centurión, Whitmore, Evans, Murphy, Agafonova, Bonifacio, D'Odorico, Levshakov, López, Martins, Petitjean, Rahmani, Reimers, Srianand, Vladilo & Wendt, A&A 555 (2013) A68
- Rahmani, Wendt, Srianand, Noterdaeme, Petitjean, Molaro, Whitmore, Murphy, Centurión, Fathivavasari, D'Odorico, Evans, Levshakov, López, Martins, Reimers & Vladilo, MNRAS (in press)
- Thompson, Martins & Vielzeuf, MNRAS 428 (2013) 2232
- Vielzeuf & Martins, Phys. Rev. D85 (2012) 087301
- + work @ Euclid Cosmology Theory SWG & ESO ELT-PST

Disclaimer: I am a member of the E-ELT Project Science Team. Views expressed in this talk are my own, not those of the PST.

Rationale

• Universe dominated by component whose gravitational behavior is similar to that of a cosmological constant.


- A dynamical scalar field is arguably more likely

- Such a field must be slow-rolling (mandatory for p<0) and be dominating the dynamics around the present day.
- Couplings of this field lead to potentially observable longrange forces and varying constants [Carroll 1998].
 - These measurements (whether they are detections of null results) will constrain fundamental physics and cosmology

A Dipole on the Sky?

New physics or systematics?

- Hard to model, but no known systematic can explain dipole
- Archival data, need customized pipelines [Thompson et al. 2009]

Key driver for ESPRESSO and ELT-HIRES

- Better precision & better control of systematics

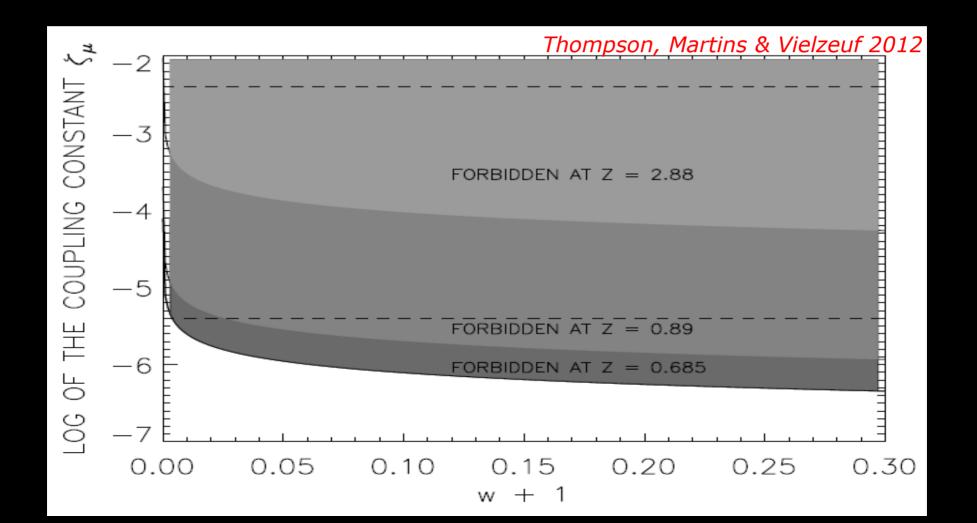
Just Checking...

- Ongoing VLT Large Program: one paper published, one accepted, many more to come
 - Paper I: A&A 555 (2013) A68
 - Paper II: MNRAS in press (arXiv next week)

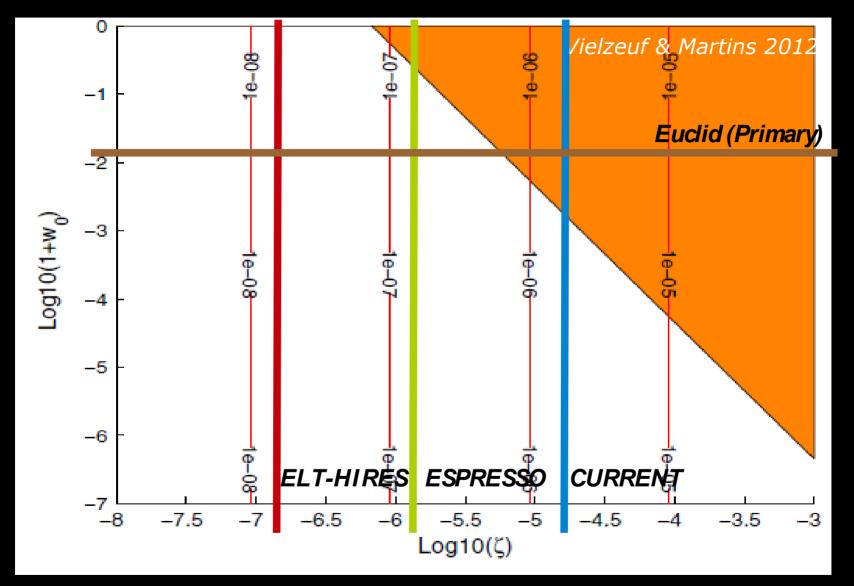
The UVES Large Program for Testing Fundamental Physics: I Bounds on a change in α towards quasar HE 2217–2818 *

P. Molaro^{1,7}, M. Centurion¹, J. B. Whitmore², T. M. Evans², M. T. Murphy², I. I. Agafonova³, P. Bonifacio⁴, S. D'Odorico⁵, S. A. Levshakov^{3,12}, S. Lopez⁶, C. J. A. P. Martins⁷, P. Petitjean⁸, H. Rahmani¹⁰, D. Reimers⁹, R. Srianand¹⁰, G. Vladilo¹, M. Wendt^{11,9}

The UVES Large Program for Testing Fundamental Physics II: Constraints on a Change in μ Towards Quasar HE 0027–1836^{*}


H. Rahmani¹, M. Wendt^{2,3}, R. Srianand¹, P. Noterdaeme⁴, P. Petitjean⁴, P. Molaro ^{5,6},
J. B. Whitmore⁷, M. T. Murphy⁷, M. Centurion⁵, H. Fathivavsari⁸, S. D'Odorico⁹,
T. M. Evans⁷, S. A. Levshakov^{10,11}, S. Lopez¹², C. J. A. P. Martins⁶, D. Reimers², and G. Vladilo⁵

- Bottleneck: intra-order distortions (~200m/s) & possible long-range distortions on UVES
 - Also identified in HARPS and Keck-HIRES


Taxonomy: Class I

• If the varying α field also provides the dark energy, its evolution is parametrically determined

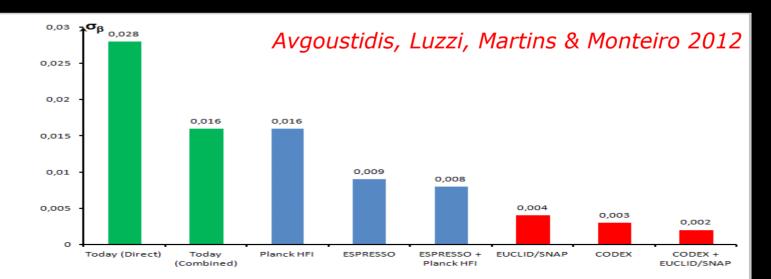
$$\frac{\Delta \alpha}{\alpha}(z) = \zeta \int_0^z \frac{\sqrt{\Omega_\phi(z') \left[1 + w(z')\right]}}{1 + z'} dz'$$

The Future is Bright

• ELT-HIRES will either find variations or rule out (at more than 10 sigma) the simplest classes of these models

Going Further

- Standard methods (SNe, etc) are of limited use as dark energy probes [Maor et al. 2001, Upadhye et al. 2005, etc]
 - Since the field is slow-rolling when dynamically important, a convincing detection of w(z) will be tough at low z.
- We must probe the deep matter era regime, where the dynamics of the hypothetical scalar field is fastest.
 - Varying fundamental couplings are ideal for probing scalar field dynamics beyond the domination regime [Nunes & Lidsey 2004]
 - ALMA, ESPRESSO & ELT-HIRES can map this up to z~4 and possibly beyond
 - Plus measurements of the redshift drift...
 - Plus deep matter era Type Ia supernovas (ELT-IFU)...


The Future is Bright

Constant, Baseline	SNe Only	SNe + ESPRESSO	SNe + ELT-HIRES
SNAP	3.324	3.442	5.021
SNAP + E-ELT	3.578	3.714	5.021
SNAP + TMT	3.541	3.677	5.034
Early Dark Energy, Ideal	SNe Only	SNe + ESPRESSO	SNe + ELT-HIRES
Early Dark Energy, Ideal SNAP	SNe Only 3.240	SNe + ESPRESSO 5.599	SNe + ELT-HIRES 8.222
	-		

- ELT-HIRES can constrain dark energy better than supernovas, but optimized mapping strategy is needed (and it's not trivial)
 - To get best PCA mode <1 with 16 α measurements you need 45 nights on UVES, 24 nights on ESPRESSO, 5 nights on ELT-HIRES

A Consistency Test

- T(z)=T₀(1+z) is a robust prediction of standard cosmology
 - Adiabatic expansion, photon number conservation; violated in many scenarios, e.g. string theory inspired ones
 - If $T(z)=T_0(1+z)^{1-\beta}$, find $\beta=-0.01\pm0.03$ [Noterdaeme et al. 2011]
- $d_{L}=(1+z)^2 d_A$ is a robust prediction of standard cosmology
 - Metric theory of gravity, photon number conservation; violated if there's photon dimming, absorption or conversion
 - If $d_{L}=(1+z)^{2+\epsilon}d_{A}$, find $\epsilon=-0.04\pm0.08$ [Avgoustidis et al. 2010, ...]
- In many models $\beta = -2\epsilon/3$: distance duality also constrains β

Taxonomy: Class II

- Models where the degree of freedom responsible for the varying constants does not provide (all of) the dark energy can be identified through (in)consistency tests
- For example, in Bekenstein-type models one has

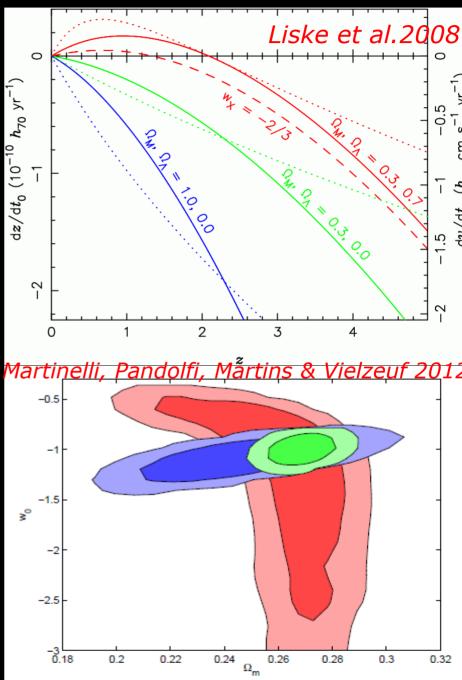
$$\frac{T(z)}{T_0} = (1+z) \left(\frac{\alpha(z)}{\alpha_0}\right)^{1/4} \sim (1+z) \left(1+\frac{1}{4}\frac{\Delta\alpha}{\alpha}\right)$$

Avgoustidis, Martins, Monteiro, Vielzeuf & Luzzi 2013

$$d_L(z) = d_A(z)(1+z)^2 \left(\frac{\alpha(z)}{\alpha_0}\right)^{3/8} \sim d_A(z)(1+z)^2 \left(1+\frac{3}{8}\frac{\Delta\alpha}{\alpha}\right)$$

- ...which is relevant for Planck data analysis
- holds for disformal couplings, opposite sign for chameleons
- Note that even if this degree of freedom does not dominate at low redshifts it can still bias cosmological parameter estimations

Scalar-Photon Couplings


 Photon number non-conservation will change T(z), the distance duality relation, etc. We quantify how these models weaken constraints on cosmological parameters

Dataset	δw_0	δw_a	$\delta\Omega_m$	δk		
Current (weak)	0.25	1.3	0.06	$1.2 \times 10^{-6} (10^{-5})$		
Current (strong)	0.22	0.65	0.06	$1.2 \times 10^{-6} (10^{-5})$		
Euclid(BAO)+SNAP	0.15(0.35)	0.4(1.6)	0.03	$10^{-6}(1.1 \times 10^{-5})$		
Euclid only (BAO+SN)	0.15(0.35)	0.6(1.6)	0.03	_		
Euclid(BAO+SN)+SNAP	0.14(0.35)	0.8(1.5)	0.025	$8 \times 10^{-7} (9 \times 10^{-6})$		
Euclid(BAO)+SNAP+E-ELT	0.13(0.3)	0.75(1.45)	0.023	$8 \times 10^{-7} (8 \times 10^{-6})$		
Euclid(BAO)+SNAP+TMT	0.13(0.25)	0.4(1.3)	0.024	$6\!\times\!10^{-7}(8\!\times\!10^{-6})$		
Avgoustidis, Martins, Monteiro, Vielzeuf & Luzzi, arXiv:1305.7031						

- Euclid can, even on its own, constrain dark energy while allowing for photon number non-conservation
 - Stronger constraints in combination with other probes
- T(z) measurements are crucial for breaking degeneracies: they can be obtained with ALMA, ESPRESSO & ELT-HIRES (also Planck clusters now – and PRISM later)

The Redshift Drift

- Standard dark energy probes are geometric and/or probe localised density perturbations
 - No measurements of the global dynamics so far
- Redshift drift yields clean signal [Sandage 1962, Loeb 1998]
 - Caveat: signal is tiny!
- Does not map out our (presentday) past light-cone, but directly measures evolution by comparing past light cones at different times
 - Ideal probe of dark sector in deep matter era, complements supernovas and constants
 - Also breaks CMB degeneracies

So What's Your Point?

- Observational evidence for the acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete, if not incorrect
 - Several few-sigma hints: smoke but no smoking gun
 - Keep in mind the dark energy lesson: redundancy is crucial!

- Forthcoming high-resolution ultra-stable spectrographs will enable new generation of precision consistency tests
 - New tests: Equivalence Principle, Strong Gravity, Redshift drift
 - Interesting synergies with other facilities, including ALMA & Euclid