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•  Cosmology is thriving in a golden age, where a central theme is 
the perplexing fact that the Universe is undergoing an 
accelerating expansion. 

•  This represents a new imbalance in the governing gravitational 
equations. 
  Cause? Remains an open and tantalizing question  

•  Historically, physics has addressed such imbalances by either 
identifying sources that were previously unaccounted for, or by 
altering the governing equations. 
 

•  The standard model of cosmology has favored the first route to 
addressing the imbalance by a missing stress-energy 
component.  

•  One may also explore the alternative viewpoint, namely, 
through a modified gravity approach.  



Assume the Universe to be spatially homogeneous and 
isotropic, governed by the FLRW metric: 

 
 
 
k = -1,0,+1 (open, flat,  
or closed Universe) 
 
Matter content described  
by a perfect fluid: 
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Einstein field equation:                   Friedmann equations: 
 
 
 
Ordinary matter obeys  
Energy Conditions:                                                            
                                                         Accelerated expansion: 
                                                         Violates the SEC!! 
                                                                                                                                                              
 
 
 
Introduce cosmological constant à vacuum energy: 
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l  Simplest model 
l  Compatible with all data so far 
l  No other model is a better  fit 
l  However, theory cannot explain it!  

  
 
 
 
 
l  Why so small? (note a difference of 120-orders-of-

magnitude. EMBARRASSING!!!) 
l  Why so fine-tuned?   
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 2. ΛCDM fits data well, 
but we cannot explain it 



Alternatives to ΛCDM? 



Gµν = 8πGTµν +8πGTµν
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Dynamical Dark Energy in General Relativity (GR) 
“quintessence”, etc… 

Dark Gravity – Modify GR on large scales 



General Relativity (GR): 
Hilbert-Einstein action 

S = d 4x∫ −g 1
2κ

R +  Lm (gµν ,ψ)
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l  GR is a classical theory, therefore no reference to 
an action is required; 

l  However, the Lagrangian formulation is elegant, 
and has merits: 
1.  Quantum level: the action acquires a physical meaning, 

and a more fundamental theory of gravity will provide 
an effective gravitational action at a suitable limit; 

2.  Easier to compare alternative gravitational theories 
through their actions rather than by their field 
equations (the latter are more complicated); 

3.  In many cases one has a better grasp of the physics as 
described through the action, i.e., couplings, kinetic 
and dynamical terms, etc   

 



General Relativity (GR): 
Hilbert-Einstein action 

Consider a 4-dimensional manifold with a  
connection,         , and a symmetric metric        . 
 
l  The affine connection is the Levi-Civita connection. 

This requires that: 
1.  The metric to be covariantly conserved; 
2.  The connection to be symmetric. 

l  No fields other than the metric mediate the 
gravitational interaction; 

l  Field equations should be 2nd order partial 
differential equations; 

l  Field equations should be covariant (or the action be 
diffeomorphism invariant). 
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Higher order gravity: 
 

Higher order actions may include various curvature 
invariants, such as: 

 

 
 

Consider f(R) gravity, for simplicity: 
 
 
 
 

Appealing feature: combines mathematical 
simplicity and a fair amount of generality! 
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3. f(R) gravity: 
The equivalence of theories 



Action:  
 
 

Gravitational field equations (vary action with gµν): 
 
 
 
 
Effective Einstein equation:                        with  
 
 
 
 
Conservation law:  

  

3. f(R) gravity 
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Ricci scalar is a dynamical degree of freedom: 
 
 
Introduces a new light scalar degree of freedom. 
 
Consider:               at low curvatures,  

                          1/R dominates 
 
This produces late-time self-acceleration 
l  But the light scalar strongly violates solar system 

constraints.  
l  All f(R) models have this problem 
l  Way out:  ‘chameleon’ mechanism, i.e. the scalar 

becomes massive in the solar system  
 - very contrived!! 
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Action:  
 
 

Gravitational field equations: 
 
 
 
 
Using the generalised Bianchi identities,  
one has a corrected conservation equation: 
 
 
 
 

 (Bertolami, Boehmer, Harko, FL, PRD 2007) 
 

3.1 R-matter couplings in f(R) gravity 
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Action:  
 
 

Gravitational field equations: 
 
 
 
 
(Perfect fluid) Non-geodesic motion:                                                                                                                                           

with an “extra force”: 
 
  
 
Intriguing result: Field eqs. depend on matter Lagrangian. 
Different choices: 
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3.1 R-matter couplings in f(R) gravity 
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(Bertolami, FL, Paramos, PRD 2008) 



f(R) gravity may lead to an effective dark energy. 
Consider the FLRW metric, and a perfect fluid,  
the generalised Friedmann equations: 
 
 
 
 
Where the curvature terms are given by: 
                                                                     
 
 
 
 
Late-time acceleration: 
                                                                    !! 
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3.2 Late-time cosmic acceleration 
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e.g. vacuum                 , effective EOS                         
 
A. Consider                    , generic power law  
 
 
Results:                                  , 
 
 
Suitable choice of n leads to                    and late-time 
acceleration 
 
B. Another example                                     : 
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o  Considering higher-order gravity, motivation 
consistent with several “quantum gravity” candidates 

 
o  String/M-theory predict unusual gravity-matter 

couplings 
 
o  Couple a scalar field with higher order invariants 
 
o  String/M-theory predict scalar field couplings with the 

Gauss-Bonnet invariant important in the appearance 
of non-singular early time cosmologies 

 
o   Apply these motivations to the late-time Universe! 

  

4. Gauss-Bonnet gravity 



Action of Gauss-Bonnet gravity: 
 
 
 
Canonical field:                  ;  phantom field 
 
Gauss-Bonnet invariant: 
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Action of Gauss-Bonnet gravity: 
 
 
 
Canonical field:                  ;  phantom field 
 
Gauss-Bonnet invariant: 
 
FLRW metric, gravitational field equations: 
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Equation of motion for the scalar field: 

 
Define an effective equation of state:   
 
- Exponential scalar potential and scalar-GB coupling: 

 
- Scale factor: 

 
- Scalar field: 
 
 
EOS:                       , if                              , 

23
21
H
Hp

GB

GB
eff


−−==

ρ
ω

00 /2
0

/2
0 )(  ,)( φφφφ φφ effeVV == −

( ) ( ) 0)('24)('3 22 =+−++ HHHfVH  φφφφλ

⎪⎩

⎪
⎨
⎧

<−

>
=

0for    ,)(

0for             ,
)(

00

00

0

0

htta

hta
ta

h
s

h

⎩
⎨
⎧

<−

>
=

0for    ,]/)[(ln

0for               ),/ln(
)(

010

010

0 httt

htt
t h

sφ

φ
φ

03
21
heff −−=ω 1,00 −<< effh ω 1,00 −>> effh ω



5. Some recent work  

•                  theory: Generalization of all previous f(R) gravitational 
models. 

 (Harko, FL, EPJC 2010);  
 (Harko, FL, IJMPD 2012; Honorable Mention in the Gravity Research 
 Foundation Essay Contest 2012) 

•  Specific application:               gravity  
 (Harko, FL, Odintsov, Nojiri, PRD 2011). 

•  Generalization:                            gravity  
 (Haghani, Harko, FL, Sepangi, Shahidi, arXiv:1304.5957) 

•  C-theories: Unification of Einstein and Palatini gravities 
 (Amendola, Enqvist, Koivisto, PRD 2011). 

•  Hybrid metric-Palatini theory  
 (Harko, Koivisto, FL, Olmo, PRD 2012). 
 (Capozziello, Harko, FL, Olmo, arXiv:1305.3756; Honorable Mention in 
 the Gravity Research Foundation Essay Contest 2013). 

 

),( mLRf

f (R,T )

f (R,T,RµνT
µν )



5.1                gravity  
(Harko, FL, Odintsov, Nojiri, PRD 2011) 

l  The action is given by: 

f (R,T) is an arbitrary function of the Ricci scalar, R, 
T, trace of the energy-momentum tensor 

l  Note that the dependence from T may be induced by exotic 
imperfect fluids or quantum effects (conformal anomaly).  

l  May be considered a relativistically covariant model of interacting 
dark energy. 

f (R,T )

S = d 4x∫ −g 1
2κ

f (R,T ) +  Lm (gµν ,ψ)
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5.1                gravity  
(Harko, FL, Odintsov, Nojiri, PRD 2011) 

l  Possibility of reconstruction of FRW cosmologies by an appropriate choice 
of a function f (T) was demonstrated; 

l  Since the covariant divergence of the stress-energy tensor is non-zero, the 
motion of massive test particles is non-geodesic;  

l  Consequently, an extra acceleration, due to the coupling between matter 
and geometry, is always present; 

 
l   The Newtonian limit of the model was investigated, and the expression of 

the extra-acceleration was also obtained; 

l  The precession of the perihelion of the planet Mercury was used to obtain 
a general constraint on the magnitude of the extra-acceleration.  

 
 

f (R,T )



5.2 Hybrid metric-Palatini gravity  
(Harko, Koivisto, FL, Olmo, PRD 2012) 

l  The action is given by: 

l  Has the scalar-tensor representation: 

l  Cosmological applications :  
  Capozziello, Harko, Koivisto, FL, Olmo, (JCAP 2013) 
 

l  Dark matter problem in hybrid metric-Palatini gravity:  
 Capozziello, Harko, Koivisto, FL, Olmo, (JCAP 2013) 

l  Wormhole geometries: 
 Capozziello, Harko, Koivisto, FL, Olmo (PRD, 2012) 



5.2 Hybrid metric-Palatini gravity  
(Harko, Koivisto, FL, Olmo, PRD 2012) 

l  Interesting features: 
l  Predicts the existence of a long-range scalar field, that explains the 

late-time cosmic acceleration; 
l  Passes the local tests, even in the presence of a light scalar field. 
l  Provides an effective geometric alternative to the dark matter 

paradigm. 

l  In a monistic view of Physics, one would expect Nature to somehow 
choose between the two distinct possibilities offered by the metric and 
Palatini formalisms.  

l  We have shown, however, that a theory consistent with observations 
and combining elements of these two standards is possible.  

l  Hence gravity admits a diffuse formulation where mixed features of 
both formalisms allow to successfully address large classes of 
phenomena.  

 



Conclusions 
l  Observations imply a late-time cosmic acceleration. But, theory cannot 

satisfactorily explain it;   
l  Generalizations of the Einstein-Hilbert (EH) action not such a 

straightforward procedure: 
 - Two distinct classes, metric variational principle and Palatini    
   approach (Both approaches lead to GR for the EH action);  
 -  Metric-affine theories of gravity: independent connection   
   coupled to matter. Several aspects still completely obscure,    
   such as: exact solutions, post-Newtonian expansions and Solar   
   System tests, cosmological phenomenology, structure structure,   
   application to particle physics, etc. 
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straightforward procedure: 
 - Two distinct classes, metric variational principle and Palatini    
   approach (Both approaches lead to GR for the EH action);  
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l  Confrontation with cosmological, astrophysical and Solar System 
constraints clarified the difficulty of constructing simple viable models in 
modified gravity: 

 - Viable models need to account for all the cosmological epochs; 
 - Solar system tests: problematic issue of “chameleon” mechanism! 

l  Even if the theory is tailored to fit cosmological observations and pass 
local tests, problems related with stability arise; 

l  Theorists need to keep exploring: better models, better observational tests  
  


