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| Acoustic glitches

What are acoustic glitches?

Regions where sound speed changes rapidly

Caused by localized changes in the stratification

to parametrize the extent of overshoot; very often, in analogy with

the mixing-length parameter, the extent is taken to be a multiple of

the pressure scaleheight at the convection-zone boundary. Con-

straints on this parameter, in the case of convective cores, have

been obtained from comparison of models of open clusters or

binary stars with observations (e.g. Andersen, NordstroÈm & Clausen

1990; Kozhurina-Platais et al. 1997; NordstroÈm, Andersen &

Andersen 1997; SchroÈder, Pols & Eggleton 1997). However, it is

of obvious interest to obtain more direct observational evidence

about the properties and extent of the overshoot region, as may be

possible from studies of the frequency signal considered here.

1.2 Seismic study of overshoot

Seismic studies of the base of the solar convective envelope have

constrained the properties at that transition region (e.g. Basu,

Antia & Narasimha 1994; Monteiro, Christensen-Dalsgaard &

Thompson 1994 ± hereafter MCDT; Roxburgh & Vorontsov 1994;

Christensen-Dalsgaard, Monteiro & Thompson 1995 ± hereafter

CDMT), which is of relevance to mixing, rotation and magnetic

activity (e.g. Monteiro, Christensen-Dalsgaard & Thompson

1998b, and references therein). An important implication is that

the overshoot layer is not nearly adiabatic stratified, as in simple

models: there is growing evidence that the effect on the

temperature stratification is small in spite of an extended

penetration region (e.g. Singh, Roxburgh & Chan 1995).

The method used is to identify in the frequencies of oscillation a

characteristic signature originating from the base of the convec-

tion zone. That signature, corresponding to a periodic signal as a

function of the frequency, can be isolated in the observed values

and used to constrain the structure of the transition layer at the

base of the convective envelope. For more distant stars, and in

contrast to the Sun, only modes of very low degree are expected to

be observed. That restricts our seismic analysis to a small number

of modes, and some degree-dependent information is lost. Even

so, the major properties of the signal, namely its period and

amplitude (see Section 3), can still be determined if the

observations have sufficiently low errors. The typical signal is a

frequency modulation of order 0.1mHz, which places very

stringent limits on the detectability of the signal.

The modes of oscillation are characterized by their radial order

n, which approximately corresponds to the number of nodes of the

oscillation in the radial direction, and their degree l, which

characterizes the horizontal wavelength of the oscillation. The

properties of the oscillations, including the angular frequency vnl,

reflect the resonance cavity that supports each oscillation mode.

For acoustic modes, such as are relevant for solar-like oscillations,

this dependence is given to leading order by the asymptotic

expression (Tassoul 1980)
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where c is the local adiabatic sound speed, r the radial distance

to the centre, and R the photospheric radius of the star. The

quantity t t gives the total acoustic size of the star (the time an

acoustic wave takes to go from the surface to the centre of the

star). Observation of oscillation frequencies in a star allows us to

determine Dv , which depends on the stellar mass and radius

according to Dv /
������������

M=R3
p

: Given that the determination of mass

and radius is extremely difficult, in general, the determination of

Dv would be an important constraint on the global properties of a

star.

However, the deviations from this asymptotic description of the

frequencies contain important information about the internal

structure of the star. That occurs, for example, when the

stratification of a star varies rather abruptly, as at the edge of a

convective region. It is this aspect that we address by determining

the extent to which we can use the finer details in the frequency

spectrum to measure the properties of convective envelopes in

stars of mass similar to the solar value. Following the work of

CDMT we first establish the expression for the signal in the

frequencies owing to the transition region associated with the base

of a convective envelope in these stars. Several models of different

mass are then considered, some of these including overshoot, in

order to determine the expected properties of the signal. We also

address the changes of the signal with age. The detectability of the

signal is discussed, in the light of the forthcoming programs for

observing solar-like oscillations on other stars.

2 THE BASE OF A CONVECTIVE ENVELOPE

2.1 The derivative of the local sound speed

The adiabatic sound speed c plays a crucial role in determining the

frequencies of the global p modes of a star. At the edge of a

convective region the change in the temperature gradient from

being radiative to the adiabatic value causes a discontinuity in the

second derivative of the sound speed. This is illustrated in Fig. 1,

which shows the run of the sound-speed derivative with acoustic

depth for a zero-age solar model.

The adiabatic sound speed, which is an indirect measure of the

temperature T, is given by c2 � G1p=r / T; where p is pressure, r
is density and adiabatic exponent G1 ; � log p= log r�s: This is
why we can write the sound-speed derivative, with respect to

Figure 1. Derivative of the sound speed versus acoustic depth t illustrating

the sharp feature at the base of the convective envelope in zero-age main-

sequence stars of a solar mass. One model does not incorporate overshoot

of any form (continuous line) while the other has an adiabatically stratified

overshoot layer of size `ov � 0:189Hp (dashed±dotted line). Note also the

small but relatively sharp bump at t . 400 s which arises from the second

ionization of helium and the associated variation in G1, as well as the

strong variation in the core.

166 M. J. P. F. G. Monteiro, J. Christensen-Dalsgaard and M. J. Thompson

q 2000 RAS, MNRAS 316, 165±172

Monteiro & Thompson (2000)

Base of the convection zone and second helium ionization region

João Faria | July 18, 2013 - ENAA 2013 3 / 21



| Acoustic glitches

What are acoustic glitches?

Regions where sound speed changes rapidly
Caused by localized changes in the stratification

c2 =
Γ1P

ρ

Derivative wrt. acoustic depth

d log c2

dτ
=

d log Γ1

dτ
+

g

c

[
(Γ1 − γ) + (γ − 1)

∇
∇a

]

to parametrize the extent of overshoot; very often, in analogy with

the mixing-length parameter, the extent is taken to be a multiple of

the pressure scaleheight at the convection-zone boundary. Con-

straints on this parameter, in the case of convective cores, have

been obtained from comparison of models of open clusters or

binary stars with observations (e.g. Andersen, NordstroÈm & Clausen

1990; Kozhurina-Platais et al. 1997; NordstroÈm, Andersen &

Andersen 1997; SchroÈder, Pols & Eggleton 1997). However, it is

of obvious interest to obtain more direct observational evidence

about the properties and extent of the overshoot region, as may be

possible from studies of the frequency signal considered here.

1.2 Seismic study of overshoot

Seismic studies of the base of the solar convective envelope have

constrained the properties at that transition region (e.g. Basu,

Antia & Narasimha 1994; Monteiro, Christensen-Dalsgaard &

Thompson 1994 ± hereafter MCDT; Roxburgh & Vorontsov 1994;

Christensen-Dalsgaard, Monteiro & Thompson 1995 ± hereafter

CDMT), which is of relevance to mixing, rotation and magnetic

activity (e.g. Monteiro, Christensen-Dalsgaard & Thompson

1998b, and references therein). An important implication is that

the overshoot layer is not nearly adiabatic stratified, as in simple

models: there is growing evidence that the effect on the

temperature stratification is small in spite of an extended

penetration region (e.g. Singh, Roxburgh & Chan 1995).

The method used is to identify in the frequencies of oscillation a

characteristic signature originating from the base of the convec-

tion zone. That signature, corresponding to a periodic signal as a

function of the frequency, can be isolated in the observed values

and used to constrain the structure of the transition layer at the

base of the convective envelope. For more distant stars, and in

contrast to the Sun, only modes of very low degree are expected to

be observed. That restricts our seismic analysis to a small number

of modes, and some degree-dependent information is lost. Even

so, the major properties of the signal, namely its period and

amplitude (see Section 3), can still be determined if the

observations have sufficiently low errors. The typical signal is a

frequency modulation of order 0.1mHz, which places very

stringent limits on the detectability of the signal.

The modes of oscillation are characterized by their radial order

n, which approximately corresponds to the number of nodes of the

oscillation in the radial direction, and their degree l, which

characterizes the horizontal wavelength of the oscillation. The

properties of the oscillations, including the angular frequency vnl,

reflect the resonance cavity that supports each oscillation mode.

For acoustic modes, such as are relevant for solar-like oscillations,

this dependence is given to leading order by the asymptotic

expression (Tassoul 1980)

vnl , n� l
2
� 1

4
� a

ÿ �

Dv; �1�

a (n,l) is owing to the change of phase occurring at the upper

reflecting boundary, just beneath the surface, and

Dv

2p
� 2

�R

0

dr

c

� �21

;

1

2tt
; �2�

where c is the local adiabatic sound speed, r the radial distance

to the centre, and R the photospheric radius of the star. The

quantity t t gives the total acoustic size of the star (the time an

acoustic wave takes to go from the surface to the centre of the

star). Observation of oscillation frequencies in a star allows us to

determine Dv , which depends on the stellar mass and radius

according to Dv /
������������

M=R3
p

: Given that the determination of mass

and radius is extremely difficult, in general, the determination of

Dv would be an important constraint on the global properties of a

star.

However, the deviations from this asymptotic description of the

frequencies contain important information about the internal

structure of the star. That occurs, for example, when the

stratification of a star varies rather abruptly, as at the edge of a

convective region. It is this aspect that we address by determining

the extent to which we can use the finer details in the frequency

spectrum to measure the properties of convective envelopes in

stars of mass similar to the solar value. Following the work of

CDMT we first establish the expression for the signal in the

frequencies owing to the transition region associated with the base

of a convective envelope in these stars. Several models of different

mass are then considered, some of these including overshoot, in

order to determine the expected properties of the signal. We also

address the changes of the signal with age. The detectability of the

signal is discussed, in the light of the forthcoming programs for

observing solar-like oscillations on other stars.

2 THE BASE OF A CONVECTIVE ENVELOPE

2.1 The derivative of the local sound speed

The adiabatic sound speed c plays a crucial role in determining the

frequencies of the global p modes of a star. At the edge of a

convective region the change in the temperature gradient from

being radiative to the adiabatic value causes a discontinuity in the

second derivative of the sound speed. This is illustrated in Fig. 1,

which shows the run of the sound-speed derivative with acoustic

depth for a zero-age solar model.

The adiabatic sound speed, which is an indirect measure of the

temperature T, is given by c2 � G1p=r / T; where p is pressure, r
is density and adiabatic exponent G1 ; � log p= log r�s: This is
why we can write the sound-speed derivative, with respect to

Figure 1. Derivative of the sound speed versus acoustic depth t illustrating

the sharp feature at the base of the convective envelope in zero-age main-

sequence stars of a solar mass. One model does not incorporate overshoot

of any form (continuous line) while the other has an adiabatically stratified

overshoot layer of size `ov � 0:189Hp (dashed±dotted line). Note also the

small but relatively sharp bump at t . 400 s which arises from the second

ionization of helium and the associated variation in G1, as well as the

strong variation in the core.

166 M. J. P. F. G. Monteiro, J. Christensen-Dalsgaard and M. J. Thompson

q 2000 RAS, MNRAS 316, 165±172

Monteiro & Thompson (2000)

Base of the convection zone and second helium ionization region

João Faria | July 18, 2013 - ENAA 2013 3 / 21



| Acoustic glitches

What are acoustic glitches?

Regions where sound speed changes rapidly

Caused by localized changes in the stratification

to parametrize the extent of overshoot; very often, in analogy with

the mixing-length parameter, the extent is taken to be a multiple of

the pressure scaleheight at the convection-zone boundary. Con-

straints on this parameter, in the case of convective cores, have

been obtained from comparison of models of open clusters or

binary stars with observations (e.g. Andersen, NordstroÈm & Clausen

1990; Kozhurina-Platais et al. 1997; NordstroÈm, Andersen &

Andersen 1997; SchroÈder, Pols & Eggleton 1997). However, it is

of obvious interest to obtain more direct observational evidence

about the properties and extent of the overshoot region, as may be

possible from studies of the frequency signal considered here.

1.2 Seismic study of overshoot

Seismic studies of the base of the solar convective envelope have

constrained the properties at that transition region (e.g. Basu,

Antia & Narasimha 1994; Monteiro, Christensen-Dalsgaard &

Thompson 1994 ± hereafter MCDT; Roxburgh & Vorontsov 1994;

Christensen-Dalsgaard, Monteiro & Thompson 1995 ± hereafter

CDMT), which is of relevance to mixing, rotation and magnetic

activity (e.g. Monteiro, Christensen-Dalsgaard & Thompson

1998b, and references therein). An important implication is that

the overshoot layer is not nearly adiabatic stratified, as in simple

models: there is growing evidence that the effect on the

temperature stratification is small in spite of an extended

penetration region (e.g. Singh, Roxburgh & Chan 1995).

The method used is to identify in the frequencies of oscillation a

characteristic signature originating from the base of the convec-

tion zone. That signature, corresponding to a periodic signal as a

function of the frequency, can be isolated in the observed values

and used to constrain the structure of the transition layer at the

base of the convective envelope. For more distant stars, and in

contrast to the Sun, only modes of very low degree are expected to

be observed. That restricts our seismic analysis to a small number

of modes, and some degree-dependent information is lost. Even

so, the major properties of the signal, namely its period and

amplitude (see Section 3), can still be determined if the
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Oscillatory signal

Each glitch causes a shift in the eigenfrequencies that is an
oscillatory function of the frequency itself

period: determined by acoustic depth of glitch

amplitude: determined by ”size” of glitch discontinuity

Signal will be present on frequencies and frequency combinations

310 D.O. Gough 

This contribution to /C is quite small in magnitude, but can be recognized by its 
oscillatory behaviour. Thus, if the major contributions to the frequencies w~ of order n 
and their first differences are eliminated by considering the second differences 

~ 2 ~  - ~ + 1  - 2 ~ .  + ~ . - 1 ,  ( 8 . 3 )  

the oscillating term becomes apparent.  This is illustrated in Fig. 6, where second differ- 
ences of low-degree eigenfrequencies of a solar model are plotted against w. 
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Fig. 6. Second cyclic frequency differences 62u defined as in Eq. (8.3) with wn replaced by 
u ,  = w , / 2 r ,  of modes with I = 0, 1, 2, 3 and 4 of a standard solar model, plotted against u,. 
The units are ~tHz. 

The second method of estimating the effect of rapid variation is to regard the localized 
region as a discontinuity, and at that  discontinuity match asymptotic eigenfunctions 
appropriate to conditions on either side of it. This procedure is perhaps more appropriate 

2 at the base of the convection zone, which leads to for modelling the discontinuity of wc 
a discontinuity in the coefficient ~2 of the undifferentiated term in Eq. (3.8). Rather 
than present the details of the stellar asymptotics explicitly, I treat  a much simpler 
but  mathematical ly similar problem which exhibits the essence of the influence of the 
discontinuity that  I wish to illustrate. I consider the longitudinal acoustic oscillations of 
gas in a pipe governed by the simple equation 

d2kp w 2 
dz  2 + ~ ' ~  = 0, (8.4) 

in which c = cl if 0 < z < l a  and c = c2 if Aa < z <: a, where A, cl and c2 are constants. 
Adopting, for simplicity, the boundary conditions k~ = 0 at z = 0 and z = a, with ~ and 
c2dgt /dz  continuous at z = Aa, then yields the eigenvalue equation 

Gough (1990)

∆2ν(n, `) = ν(n−1, `)−2ν(n, `)+ν(n+1, `)
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discontinuity that  I wish to illustrate. I consider the longitudinal acoustic oscillations of 
gas in a pipe governed by the simple equation 

d2kp w 2 
dz  2 + ~ ' ~  = 0, (8.4) 

in which c = cl if 0 < z < l a  and c = c2 if Aa < z <: a, where A, cl and c2 are constants. 
Adopting, for simplicity, the boundary conditions k~ = 0 at z = 0 and z = a, with ~ and 
c2dgt /dz  continuous at z = Aa, then yields the eigenvalue equation 

Gough (1990)

∆2ν(n, `) = ν(n−1, `)−2ν(n, `)+ν(n+1, `)
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| Detection methods

How do we detect them?
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| Detection methods

Detection of the signal

Need to fit an appropriate functional form...
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| Detection methods

Detection of the signal

... to extract important parameters
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| Detection methods

Detection of the signal
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| Detection methods

Detection of the signal
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| Detection methods

Detection of the signal

In the actual frequencies (Monteiro et al. 1994, Monteiro & Thompson 2000)

no assumptions on form of smooth component
can use every frequency
may be less robust
BCZ and HeIIZ fitted separately

amplitude of signal is higher
smooth component is simpler (but assumes functional form)
requires frequencies of consecutive orders
increased errors
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| Detection methods

Detection of the signal - improvements

In the actual frequencies (Monteiro et al. 1994, Monteiro & Thompson 2000)

no assumptions on form of smooth component - difficult parameter λ 7
can use every frequency
may be less robust global minimization (PIKAIA1) + IRLS X
BCZ and HeIIZ fitted separately together X

In the second differences (Basu et al. 1994, Mazumdar & Antia 2001)

amplitude of signal is higher
smooth component is simpler (but assumes functional form)
requires frequencies of consecutive orders
increased errors
global minimization (PIKAIA) + IRLS X

1Charbonneau, P., 1995, ApJS, 101, 309
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| Data

The data
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| Data

The 16 Cyg binary

Evolved solar-type stars

No dynamical masses

On Kepler SC target list since Q7

MA ≈ 1.11M�
Age ≈ 6.9Gyr

MB ≈ 1.07M�
Age ≈ 6.7Gyr

Metcalfe et al. (2012)
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| Data

The 16 Cyg binary
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| Results

Results
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| Results

Results - frequencies

9 months data from Kepler
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| Results

Results - second differences

9 months data from Kepler
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| Results

Results - comparison

16 Cyg A 16 Cyg B

τ
BCZ

τ
HeIIZ

τ
BCZ

τ
HeIIZ

δν 2407.22± 133 915.03± 8 2577.48± 141 777.08± 16

∆2ν 2328.23± 249 967.38± 67 2511.74± 255 857.42± 35
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| Results

Is this useful?
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| Results

Results - Helium abundance (16 Cyg A)
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Summary

The two detection methods give consistent results for
signal parameters

Besides the location of the BCZ and HeIIZ we can
constraint the helium surface abundance

Consistent with stellar models fitted to the frequencies
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Summary

The two detection methods give consistent results for
signal parameters

Besides the location of the BCZ and HeIIZ we can
constraint the helium surface abundance

Consistent with stellar models fitted to the frequencies

Thank you!
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