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Motivation

- Models of structure formation assume that small local in-
homogeneities grow due to gravitational instability, so that the over-
densities collapse and eventually form the “bound” structures we
observe in the present universe.

- An idea underlying this viewpoint is that the collapse of the over-
densities departs from the general expansion of the universe.

- This naturally relates to the interplay between global and local
Physics. In particular, local physics seems to be immune to global
physics
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-On a different context, L. Herrera and co-workers have studied the
“cracking” of compact objects in astrophysics using small anisotropic
perturbations around spherically symmetric homogeneous fluids

In equilibrium.

- The latter references are concerned with the existence of a shell
where there is a change in the direction of the radial force acting on
the particles of the shells. Whenever this happens one has what they
termed as a cracking situation, a concept introduced by Herrera in
1992 (PLA 165)
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So, we investigate spherically symmetric spacetimes and discuss
conditions for the existence of dividing shells separating expanding
from collapsing regions within the full GR framework (i.e. non

perturbatively).

Outline:
Brief introduction

The coordinate system
Tolman solution for p=0

Local conditions for a separating shell (I) — perfect fluid

Shell crossings

Local conditions for a separating shell (ll) — imperfect
fluid

Conclusions
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A vl

Static (Schwarzschild 1916, de Sitter 1917)

Spherically
symmetric
Models

Expanding (Friedmann 1921,
Lemaitre 1926-1933
Tolman 1934,...)

Contracting (Lemaitre 1933, Toiman 1934,
Bondi 1947, Chandrasekhar, 1930,...)
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We aim at analysing the interplay of the two main regimes that
where so intensively studied in a separate way, i.e., spherical
collapse and expansion within GR

Similar concerns have been pursued in several works in the literature:

H. Bondi, MNRAS 142 (1969) 142); (bounces)

W. B. Bonnor, Mon. Not. R. Astron. Soc. 167, 55 (1974)

J. Barrow, G Galloway, and F.Tipler, MNRAS 223 (1986) (recollapse)
B. Carr, A. Coley, Phys.Rev. D62 (2000) 044023

How local physics departs and becomes immune from the global expansion.

A.Einstein and E.G. Strauss, Rev.Mod. Phys. 17,120 (1945),

ibid 18,148 (1946)

G. F. R. Ellis, Local and Global Physics, Int. J. Mod. Phys A17, 2667 (2002)
V. Faraoni and A. Jacques, Phys. Rev. D 76, 063510 (2007),
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Abducted by an alien circus company,
Professor Doyle is forced to write calculus
equations in center ring.
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(1939) R. Oppenheimer and G. Volkoff derived a condition for the
equilibrium of a spherical configuration such as a (neutron) star. It
became known as the TOV equation of state

dP (p+p)(M/r> +4xPr)

dr 1-2M/r

In 1972 Gunn and Gott put foward their influential model for spherical
collapse model.

[more recently...Manera & Mota, 2006, Nunes & Mota 2006,
Pace et al 2010...]
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Astrophysics made simple
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Familiar LTB form of Einstein equations:

(3Rf)2

2 = —a(T. R)2(3.0)2dT? +
ds a(T, R(371)2dT TR
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The LTB solutions p=0
M = M(R)

dt E =E(R
dn=E = )

h(n)=n-sinn if E <O
h(n)=simmhn-n if E>0

M(R
t =1, (R) = 2(\/%))3 h(n)
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15



3+1 Splitting N¢ := —n‘n, heb 1= g + papb,

‘ n,:=—avV,t =|[—a,0,0,0]|(n,n® = —1)

Use Generalised Painlevé-Gulistrand coords (also, Gautreau)
) [Lasky and Lun PRD 2006, 2007]

dR + [(t,R)dt
ds’ = -a’dt’ ( ) + rz(t,R)(dH2 +sin’ Hd¢2)
1+ E(t,R)
0= lapse function, . [3=shift/function, E =curvature-energy
t+dt |
Baq
| aé?dzél‘.“"-Tl.(L,Lx Jdt-
¢ b
t—dt
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Do 3+1 decomposition

— : R - I ,
Rg.p = IV;JIH:(.. T Rg.p — —ApNy T 3 (H)hah T T ab T W ap»

7 = PNl + p h? + 119 4 2 jlapb
o, =0(t,R)P,

P’ = diag(-2,11) E, =3(tR)P
ab = s ab

I, =1I(t,R) P, | |
— (Dan -53 gachDc)a =e¢(t,R) P,

(04
— n" 1
H =n 4 3Ieab _§3R 3gab = Q(t,R) Pab
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Introducing the Misner-Sharpe (also ADM) mass

M = *d
And restricting to a perfect fluid f pr-ar

. “ ) M l 9
M = B4wPr = 4wPr-a 27 + ?Ar“ + E,

"o
o

. | + E | + E M 1 5
Erf=2p P =2 Pas2—+—=Ar-+ E
p + p + r 3

Bianchi contracted identities ,‘;: 2 = ()

nTée. =—L.p—(p+P)O =0,
| a'
= P'=—(p + P)—.
«
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Local conditions for a dividing shell:
= (9. p

O_ —_ _ e —
(3+9)= -3
0=~ 5+ 4)-

- nr

M
E —
[ r

Yo

L,r
((")

| + E M
) oTOV = [—P’+477Pr+—,:|. =0
p+P re-

(;‘)* = () > (é)l = (), mmp  a (shear) =0

) %
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NB: E is not 3-curvature!

3
.R l ) " - M 1
—— =5 [(1+E)r? + Ev'r +2(1+ E)r"r - 1] ,

But the turning point requires positive curvature

3R + %(n)z — 6a’ = l()77'p + 2A,
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“Nustration” :: A-CDM
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FIG. 1 (color online). Kinematic analysis for a given shell of
constant M and E. Depending on E relative to E);,,, the fate of
the shell is either to remain bound (E - < Ej;,,) or to escape and
cosmologically expand (E. > Ej;,,,). There exists a critical be-
havior where the shell will forever expand, but within a finite,
bound radius (E = Ejp, r = rjy). The maximum occurs at
Fiim = 3M/A
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FIG. 1 (color oaline). Effective potential kinematic analysis (Jeft) and phase space analysis (right) from [5). The kinematic analysis
for a given shell of constant M and £ depict the fate of the shell, depending on E relative to ... It either remains bound (E. < E_)
or escapes and cosmologically expands (E., > E|,..). There exists a critical behavior where the shell will forever expand, but within a
finite, bound radius (£ = E.. r = r;.). The maximum occurs at ry,., = JAM/A. The corresponding phase space behavior follows,
the scales are set by the value of ry,, = J3M/A while the actual kinematic of the shell is given by E.
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Models with anisotropic pressures (but without
heat fluxes)

T,,=(p+Phnyn, +Pg,, +2jdw, +11,,.

H,‘j — H([,I‘)Pij. Klj 3 .J.UK- a(t, r)PU.

3Rij — % J'l_] 3R .= Q(t, r)P,j
E1y = (t; 1) Py

2M IR\ 2
(L,R)?>=—+(1+ E)((,—) — 1.
R Jar
R=r= a%r =1 -
M tampp—2mr =1ZE22IR_ pop
R- o dr dr
L M= —477'R2[(P —2II)L,R + j(?—RXl - E)]
i
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r
gTOV=Ln2r=()=£2+4ﬂ(P_2H)r_(1+E) dcx
r o or

An illustration can be extrapolated from the solution by
R.Sussman and D. Pavén, PRD 60, 104023 (1999) generalising it
to the cases where E is not vanishing

L.,.a—aK + € — g = 8ll.

| [Mimoso & Crawford, CQG 1993,
e —q=8mll =2X Coley & Mac Manus, CQG 1994]
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3

R p)
—20£.0 ==+ ©? + 9a° — E_D“D,,a + 24x P — 3A,

Lha=—a0 ~¢—qg+8xll
L.=—4xL, ]l —4x (p+ P—2Il)a

— (3X + 4=II) (g +a) ,

e ' o
(5' "'0) = —30;',

— (p+3M) = =L = 3(L + 4=I1) %”

R+ ge’ — Ga’ =16z p + 2A,
Lop=—06(p~+P)—6lla
0= (Dk + flk) (Il,k + h,kP) + [p - (P - 2")] n,
—n; OF + 6lla].
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Introducing the Misner-Sharp mass [18] and following [9]

M' = dmpry (1.22)
it is possible to derive®
(Lor) = 2:’ +O+E) (M) —1+4 %Ar"’ (1.25)
and
L= :—f +4x(P — 2)r — (1+ E) %’r' - %Ar . (1.26)

This allows us to extend the generalization of the TOV function made in [1] to the case where
anisotropic stresses are present:

gTOV = —L2r . (1.27)

o 1 . r

M
gTOV = L2 r = 7 (P - 2[1)r

1

1+ E)r [(P —omy’ — snﬂ - A

" (p+ P - 20)
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Sussman and Pavon PRD 1999 Miust = M ()
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From local to global?

Shell crossing in initially expanding A-CDM

Assumptions:

(1) Regular density distribution (no vacuum at the center,
finiteness of mass)

(2) Initial Hubble-type flow >> E<Elim at center

(3) Asymptotic spatial cosmological behaviour (-->
FLRW)
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Non-locality: B
T T

O A9 O 2oy
. é ror(z) = fro Oridr,

(a + g) =- (r—:)3(a,0 ) + — f O ridr, ( )

-, [+ grov-o

(44

o) ool
(_)[% (;%(a)ro Or-dr) + @] rga,(g)m = [r; Oridr,
alrz[r‘z’d’( )ro - fro(;)rzdr]' “Cracking” (Herrera
1992)

L Herrera Phys Lett. A 165, 206 ( 1992 &{A‘R Pnp 112:9‘ errera, E. Fuenmayor, and V. Varela,
e e XXl E Vi-kisbo 3 (1994). 30
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Figure 8. Open background with arbitrary central mass distri-
bution and a single local undercoming intersection. It always
gives protected inner shells as well as unmodified cosmological
expansion, when keeping integrability despite shell-crossing.
Shell crossing entails no fundamental modification.
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Conclusions

We have found 2 local conditions for the existence shells
separating an inner collapsing region from an outer expansion.

(i) A particular balance between the so-called energy
function of the model and the potential energy (Existence

of turning point).

(ii) A stationarity condition which demands that a
generalization of the Tolman-Oppenheimer-Volkov
equilibrium condition be satisfied by the separating
shell.

In an attempt to go beyond local conditions we

have analysed the implications of shell crossings on

a cosmologically motivated model.
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The cosmologically motivated problem requires
the consideration of a content with anisotropic
stresses and, most likely, energy transfer as well.
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BASTA, !

THANKS for listening !
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(5) Local mass of crossing shell is conserved

[3M

" 3
Flim = \/ _\
Elim = — (3M)3 A% = —Ar2_|
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Bound shells

“F = E<(R < R.;)

Unbound shells

E = Eiijm(R,;) )
E = r»:ll) > R, )

*1)

Unbound shells

E=E.(R<R,;

Bound shells

E = Eyp(R,;)

) _'I—’ E=E-(R > R,;)

! \). j

R
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Figure 4. Effect of an ingoing, infinitesimal test shell-crossing
on the energy and critical energy profiles, around the local
initial configuration for the overcoming of Ejim by E. The
initial intersection shell becomes bound on such perturbations
and the local intersection shell shifts outwards in radius.

.
O M crossing ]

For rx < rim

Figure 5. Effect of an outgoing, infinitesimal shell-crossing on
the energy and critical energy profiles, around the local initial
configuration for the undercoming of Ejim by E. The initial
intersection shell becomes unbound on such perturbations and
the local intersection shell shifts outwards in radius.
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Figure 6. Effect of an outgoing, infinitesimal shell-crossing on
the energy and critical energy profiles, around the local initial
configuration for the overcoming of Ejim by E. The initial
intersection shell becomes unbound on such perturbations and
the local intersection shell shifts inwards in radius.
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Figure 7. Effect of an ingoing, infinitesimal test shell-crossing
on the energy and critical energy profiles, around the local
initial configuration for the undercoming of Eiym by E. The
initial intersection shell becomes bound on such perturbations
and the intersection shell shifts inwards in radius.
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Cracking
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