Analysis of the mineralogy of S-type asteroids from reflectance spectra

R. Albuquerque¹, **T.** Seixas^{1,2} and **M.** Silva^{1,2}

¹ Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Portugal. ² Centre for Geophysics, University of Coimbra, Portugal.

XXIII ENAA, 18-19 July 2013, Lisbon, Portugal

Raquel Albuquerque raquelmgalbuquerque@gmail.com

Supervisors: Prof. Teresa Seixas Prof. Manuel Silva

18th July 2013

Introduction

- Asteroids are composed by a dusty regolith layer:
 - Minerals
 - Impact products

- Mineralogic variety
 - Optical properties
 - Grain size
- Processes of asteroids surface alteration must be considered when analyzing their spectra:

Hapke radiative transfer model

According to Hapke(2001), the reflectance coefficient, r_c, can be calculated from the following expression:

$$r_c(i, e, g) = \frac{w}{4} \frac{1}{\mu_0 + \mu} \{ [1 + B(g)]P(g) + H(\mu_0)H(\mu) - 1 \}$$

- w Single scattering albedo
- μ Cosine of the emission angle, *e*
- μ_0 Cosine of the incidence angle, *i*
- g Phase angle
- B(g) Backscatter function
- P(g) Single particle phase function
- $H(\mu)$ Chandrasekhar's isotropic H function
- B(g) can be set to zero for phase angles greater than 15°;
- P(g) is given by the 2nd order Legendre polynomial:

 $P(g) = 1 + b\cos(g) + c(1.5\cos^2(g) - 0.5)$

• Chandrasekhar's function $H(\mu)$ is given by:

$$H(\mu) = \left[1 - \left(1 - \sqrt{1 - w}\right)\mu\left\{r_0 + \left(1 - \frac{r_0}{2} - r_0\mu\right)\ln\frac{1 + \mu}{\mu}\right\}\right]$$

 $r_0 = \frac{2}{1 + \sqrt{1 - w}} - 1$

b = -0.4 and c = 0.25

for silicate minerals

Mustard and Pieters

(1989)

Mixing Model

- Developed by M.A.Salgueiro da Silva and T.M.Seixas;
- The calculation of $w(\lambda)$ from $r(\lambda)$ can be performed recursively, by knowing *i*, *e*, *b* and *c* values and an initial estimate for $w(\lambda)$:

$$w^{(n)}(\lambda) = \frac{4(\mu_0 + \mu)}{p(g) + H(\mu_0, w^{(n-1)})H(\mu, w^{(n-1)}) - 1}r(\lambda)$$

• But first, we need to normalize asteroids reflectance spectra at $\lambda = 0.55 \ \mu m$ and calibrate it with the respective geometric albedo W_{geom} :

$$r_{mix}^{calib}(\lambda) = \frac{r_{mix}(\lambda)}{r_{mix}(0.55)} w_{geom} \equiv f_{calib} r_{mix}(\lambda)$$
???

• The calibration factor (f_{calib}) is insufficient and a smooth function $U(\lambda)$ is introduced:

$$U(\lambda) = \sum_{n=0}^{3} A_n \,\lambda^n$$

ENAA 2013

Mixing Model

 Mineral mixtures can be mathematically seen as a linear combination of the albedos of N minerals and the respective mineral parameter estimated x_k:

$$w_{mix}(\lambda) = \sum_{k=1}^{N} x_k w_k(\lambda) \qquad \qquad \sum_{k=1}^{N} x_k = 1$$

 Taking all into account, the calibrated reflectance of a mixture of minerals can be given by:

$$r_{mix}^{calib}(\lambda) = f_{calib} w_{mix}(\lambda) U(\lambda) = \left[\frac{w_{geom}}{w_{mix}(0.55)U(0.55)}\right] w_{mix}(\lambda) U(\lambda)$$

• Now we are able to determine the mineral mass fractions (M_k) , of k minerals, by knowing grain sizes (d_k) and mineral densities (ρ_k) .

$$M_k = \frac{\rho_k d_k x_k}{\sum_{l=1}^N \rho_l d_l}$$

Procedure

• Sample selection of minerals

RELAB (Keck/NASA Reflectance Experiment Laboratory at Brown University)

> Campaign for NEO Reconnaissance

Fig.2 and 3 – Asteroids 7 Ida and 433 Eros. Source: NASA/JPL

- Compute the calibrated reflectance spectra through the mixing model:
 - Geometric albedo;

Input data

- Normalized asteroids reflectance spectra at $\lambda = 0.55 \ \mu m$;
- Initial values for the polynomial coefficients of $U(\lambda)$ smooth function (A₀, A₁, A₂ and A₃) and
- Mineral parameters (plagioclase, endiopside, anorthite, ...).

Results

Results – Mineral parameters Solver

Results – Mineral mass fractions

$$M_k = \frac{\rho_k d_k x_k}{\sum_{l=1}^N \rho_l d_l}$$

- x_k estimated mineral parameter
- M_k mineral mass fraction
- d_k grain size
- ρ_k mineral densities

Conclusions

- The mixing model returned very satisfactory results;
- Practically, all the asteroids showed overlapping modeled functions with the respective calibrated spectra;
- $U(\lambda)$ fitted functions are third degree polynomials;
- The final fitted mineral abundances confirmed the silicates predominance, characteristic of S-type asteroids;
- The mixing model reveals to be a promising tool regarding asteroid mineral composition studies.

Questions?

